
USING GENETIC ALGORITHM TO OPTIMIZE THE TUNING PARAMETERS OF
DYNAMIC MATRIX CONTROL
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Abstract— Dynamic Matrix Control algorithms are a powerful control method widely applied to industrial
process. The idea of the work is applied genetic algorithms by tuning the parameters of the Dynamic Matrix
Control. The Computation method proposed here is applies in four different type of process and after that, a
comparison between the method proposed and the guidelines presented by literature, where are shown advantages
of the method proposed.
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1 Introduction

Model Predictive Control (MPC) originated in
the late seventies and has developed considerably
since then. The term MPC does not designate a
specific control strategy but a very ample range
of control methods that make an explicit use of
model of the process to obtain the control signal
by minimizing an objective function.
The various MPC algorithms only differ amongst
themselves in the model used to represent the pro-
cess and the noises and the cost function to be
minimized. This type of control is of an open
nature within which many works have been de-
veloped, being widely received by the academic
world and by industry.
Predictive control integrates optimal, stochastic,
multivariable, constrained control with dead time
processes to represent time-domain control prob-
lems [1], [2] and [3]. A variety of processes, rang-
ing from those with simple dynamics to those with
long delay times, non-minimum phase zeros, or
unstable dynamics, can all be controlled using
MPC. Extension to multivariable plants is sim-
ple, compensation for dead time is intrinsic, and
feed-forward control is introduced to compensate
for measured disturbances in a natural way [4].
There are many applications of predictive con-
trol successfully in use at the present time, not
only in the process industry but also applications
to the control of a diversity of processes ranging
from robot manipulators [5], applications for de-
velopments for distillation columns, PVC plants,
steam generators or servos [6]. They usually ex-
hibit very good performance and robustness pro-
vided that the tuning parameters have been prop-
erly selected. However the adjustment of these
parameters is not made of trivial form, needing a
good knowledge of the process.
Shridhar & Cooper, 1997, demonstrated a tuning
strategy for single-input single output (SISO), un-
constrained and first order plus dead time model
by dynamic matrix control (DMC).

This work considers a new technique of tuning of
the parameters of the DMC, using Genetic Algo-
rithms (GA)[7] and carries through a compara-
tive study between the two techniques. This pa-
per is organized as follows: section 2 describes the
classical formulation of DMC; section 3 makes an
overview of GA; the applications of GA for tuning
the parameters is the subject in section 4; in sec-
tion 5 the comparison between the two method is
presented, section 6 presents the conclusions and
the works future.

2 Dynamic Matrix Control

Dynamic matrix control is arguably the most
popular MPC algorithm currently used in the
chemical process industry. Quin and Badgwell
(1997) reported about 600 successful applications
of DMC. It is not surprising why DMC, one of
the earliest formulations of MPC, represents the
industry standard today. A large part of DMC ap-
peal is drawn from a intuitive use of a finite step
response (or convolution) model of the process, a
quadratic performance objective over a finite pre-
diction horizon, and optimal manipulated input
moves computed as the solution to a least squares
problem.
The DMC method was proposed by [9] and has
been widely accepted in the industrial world,
mainly by petrochemical industries [6]. This al-
gorithm is appropriate by the control of the pro-
cess with raised degree of interaction between the
variable, high orders and dominant delays. The
DMC presents benefits in the control of systems
with the following characteristics:

• Inherently multivariable with strong interac-
tion between the controlled variable;

• They present potential for optimization in
real time;

• They possess limits in the equipment and the
operational conditions.



The objective of algorithm DMC is to calculate
the actions of control, represented for increments
in the manipulated variable, through the mini-
mization of cost function in the Equation 1:

J =
hp∑

k=1

[ŷ(t + k|t)− r(t + k)]2

+
hc∑

k=1

λ[∆u(t + k − 1)]2 (1)

Where: ŷ(t + k|t) is an optimum k-step ahead
prediction of the system output at time t,
hp is prediction horizons, hc is the control
horizons associated to the control signal u(t),
∆u(t) = u(t)− u(t− 1), λ is weighting sequences
and r(t + k) is the future evolution of reference.

So that this problem of optimization can be
decided, it is necessary that if it has a model of the
process to calculate the prediction of the output.
The used model in algorithm DMC is known as
model of response to the step.

2.1 Prediction

The process model employed in this formulation
is the step response of the plant, while the dis-
turbance is considered to keep constant along the
horizon. The procedure to obtain the predictions
is as follows:
As a step response model is given by Equation 2:

y(t) =
∞∑

i=1

gi∆u(t− i) + n(t) (2)

Where: y(t) is the system output, u(t) is control
signal, ∆u(t) = u(t) − u(t − 1), gi is the ith unit
step response coefficient of the process and n(t) is
a perturbation acting in the process.
The predicted values along the horizon will be:

ŷ(t + k|t) =
∞∑

i=1

gi∆u(t + k − i) + n̂(t + k|t) (3)

The prediction equation can be rewritten, sepa-
rating the referring terms to the contributions of
the past, present and future [1], as described in
the Equation 5.

ŷ(t + k|t) =
k∑

i=1

gi∆u(t + k − i) (4)

+
∞∑

i=k+1

gi∆u(t + k − i) + n̂(t + k|t)

The first parcel of this equation 5 represents the
present and future contributions of the manipu-
lated variable (control). The second parcel rep-
resents the contribution for the output variable,

until the instant t−1, of the increments passed in
the manipulated variable. Disturbance are consid-
ered to be constant, that is, n̂(t + k|t) = n̂(t|t) =
ym(t)− ŷ(t|t). If the process is asymptotically sta-
ble, the coefficients gi of the step response tend to
a constant value after N sampling periods, Then
it can be written conformable Equation 5:

ŷ(t + k|t) =
k∑

i=1

gi∆u(t + k − i)

+
N∑

i=k+1

gi∆u(t + k − i) + ym(t)

−
N∑

i=k+1

gi∆u(t− i) (5)

In this way:

ŷ(t + k|t) =
k∑

i=1

gi∆u(t + k − i) + f(t + k) (6)

It represents the equation of prediction of the pro-
cess, where the first term represents the forced re-
sponse, and f(t + k) is the free response of the
system, that is, the part of the response that does
not depend on the future control actions and is
given by:

f(t + k) = ym(t) +
N∑

i=1

(gk+1 − gi)∆u(t− i)

Now the predictions can be computed along the
prediction horizon (k = 1, 2, ..., hp), considering
hc control actions.

ŷ(t + 1|t) = g1∆u(t) + f(t + 1)
ŷ(t + 2|t) = g2∆u(t) + g1∆u(t + 1) + f(t + 2)

...

ŷ(t + hp|t) =
hp∑

i=hp−hc+1

gi∆u(t + hp − i) + f(t + p)

In the matrical form:



ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + hp|t)


 =




g1 0 · · · 0
g2 g1 · · · 0
...

...
. . .

...
ghp ghp−1 . . . ghp−hc+1




∗




∆u(t)
∆u(t + 1)

...
∆u(t + hc − 1)


 +




f(t + 1)
ft + 2)

...
f(t + h + p)




It can be written that:

y = G∆u + f (7)



2.2 Control Algorithm

The cost function can be written as Equation 8:

J = (G∆u+f−r)T (G∆u+f−r)+λ∆uT ∆u (8)

The Equation 8 can be rewrite as

J =
1
2
∆uT H∆u + bT ∆u + f0 (9)

Where:

H = 2(GT G + λI);

bT = 2(f− r)T G;

f0 = (f− r)T (f− r).

The minimum of J , assuming there are no con-
straints on the control signal, can be found by
making the gradient of j equal to zero, which leads
to:

∆u = −H−1b = (GT G + λI)−1GT (f-r)

The control signal variation that is actually sent to
the process is the first element of vector ∆u,that
is given by:

∆u(t) = K(r− f)

Where K is the first row of matrix(GT G +
λI)−1GT

3 Genetic Algorithm

Genetic algorithms are search algorithms based on
the mechanics of natural selection of Darwin and
natural genetics of Mendel. They combine sur-
vival of the fittest among string structures with a
structures yet randomized information exchange
to form a search algorithm with some of the in-
novative flair of human search. In every genera-
tion, a new set of artificial creatures (strings) is
created using bits and pieces of the fittest of the
old; an occasional new part is tried for good mea-
sure. While randomized, genetic algorithms are
no simple random walk. They efficiently exploit
historical information to speculate on new search
points with expected improved performance.
GAs were first presented by [10]. GAs have been
used in many diverse areas such as function op-
timization [11], image processing [12] among oth-
ers. A GA is a parallel global search technique
that emulates natural genetic operators and works
on a population representing different parameter
vectors whose optimal value with respect to some
(fitness) criterion is searched. This technique in-
cludes operations such as reproduction, crossover
and mutation. These operators work with a num-
ber of artificial creatures called generation. By
exchanging information from each individual in a
population. GAs preserve a better individual and
yield higher fitness generation by generation such
that the performance can be improved. Next, we
will briefly describe the basic operators in a GA.

3.1 Reproduction

Reproduction is a process in which a new gener-
ation of population is formed by selecting indi-
viduals from an existing population, according to
their fitness. This process results in individuals
with higher fitness values obtaining one or more
copies in the next generation, while low fitness in-
dividuals may have none. Note, however, that re-
production does not generate new individuals but
only favorable the percentage of fit individuals in
a population of given size.

3.2 Crossover

This operation provides a mechanism for individ-
ual to exchange information via probabilistic pro-
cess. This operation takes two parents individuals
and produces two offspring who are new individual
whose characteristics are a combination of those
of their parents.

3.3 Mutation

Mutation is an operation where some character-
istics of the individuals are randomly modified,
yielding a new individual. Here, the operation
simply consists in randomly changing the value of
one bit of the string representing an individual.

4 Genetic Algorithm Applied to DMC

In this section, GA described above is used to opti-
mize the parameters of a DMC controller. Firstly,
GA will create the population of 40 individuals
that contain the parameters necessary to minimize
the objective function. The individuals of the GA
are showed as:

[hc hp λ]

After that, the GA algorithm will compute the
fitness of each individual in the population and
will select the best individuals of this generation.
The fitness functions presented in this work is:

Fit(hc, hp, λ) =
1∑

abs(y − r)2

After that, the genetic operators (reproduction,
crossover and mutation) will be carried through
in each individual to create a new generation. GA
runs iteratively during 20 generations, presenting
at the end of the procedure the best individual
that is considered the result of simulation.

5 Results

In this section, the feasibility of the proposed
method is tested on four examples, where will be
do the some comparison between [8] and the pro-
posed method. For the optimal selection of the
design parameters with GA, the population size,



Table 1: Summary of Simulation Results
Process hp hc λ
G1(s) GA 1 6 26.53

[8] 8 26 11.36
G2(s) GA 1 9 5.88

[8] 7 19 6.91
G3(s) GA 1 9 6.22

[8] 13 53 40.3
G4(s) GA 6 6 28.95

[8] 6 16 4.96

the crossover rate, the mutation rate and the gen-
eration number are chosen to be 40, 0.95, 0.05
and 20, respectively. Table I shows the compari-
son between the method demonstrated by [8] and
the proposed method, in which are shown the hc,
hp and λ.

5.1 Example 1

The first examples is a second order process with a
relatively large dead time, where the transfer func-
tion of the process can be shown in the Equation
10.

G1(s) =
e−50s

(150s + 1)(25s + 1)
(10)

The figure 1 show the response presented by two
method, for the parameters shown in the table 1.
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Figure 1: Closed-loop system

5.2 Example 2

The second example exhibits inverse response
characteristics which can be shown in the Equa-
tion 11

G2(s) =
(1− 50s)e−10s

(100s + 1)2
(11)

The figure 2 show the response presented by two
method, for the parameters shown in the table 1.
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Figure 2: Closed-loop system

5.3 Example 3

The third example has a minimum phase behav-
ior, which can be shown in the Equation 12.

G3(s) =
(50s + 1)e−10s

(100s + 1)
(12)

The figure 3 show the response presented by two
method, for the parameters shown in the table 1.
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Figure 3: Closed-loop system

5.4 Example 4

The last example is a fourth-order process with
sluggish open-loop dynamic which can be shown
in the Equation 13.

G4(s) =
e−10s

(50s + 1)4
(13)

The figure 4 show the response presented by two
method, for the parameters shown in the table 1
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Figure 4: Closed-loop system

6 Conclusion

This work presented a new technique of tuning
of the parameters of the DMC using Genetic Al-
gorithms, and presented a comparison with one
existing technique already in literature.
Through the presented results, one perceives that
the value of the output is well next for the two
techniques, however, a great difference in the val-
ues of the parameters is perceived, where the hc

and hp shown in [8] are bigger than the hc and hp

presented by GA.
The matrices in the predictive control depend ex-
clusively of the size of parameters, thus, the prac-
tical implementation using GA will be simpler, a
time that the predictive control also work with in-
version of these matrices.
One another important fact is the case where con-
strained will be considered, a time that, the num-
ber of constrained depends exclusively of these pa-
rameters, being bigger how much bigger they will
be these, becoming more still, when it will be to
be about multivariable case.
It is important to also mention the fact of system,
not being restricted the first-order plus dead time
systems, as is the case of the technique shown in
[8].
With this, concludes that the presented technique
has a promising future in the predictive control,
with perspective of use in multivariable and con-
strained systems.
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